．
 ．
 路品 ± 2相都

Specialist
 Mathematies

2006

Trial Examination I

Instructions

Answer all questions. Do not use calculators.
A decimal approximation will not be accepted if an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this exam are not drawn to scale.
Take the acceleration due to gravity to have magnitude $g \mathrm{~ms}^{-2}$, where $g=9.8$.

Question 1

B is a point on the side $\overline{A C}$ of $\triangle O A C$. Use vectors to prove that $\triangle O A C$ is isosceles if $\overline{O B}$ is a perpendicular bisector of $\overline{A C}$.

Question 2

Solve $z^{3}-3 i z^{2}+3 z+9 i^{3}=0$ over C .

Question 3

Consider the relation $x y-y^{2}=2$.
a. Find an expression for $\frac{d y}{d x}$ in terms of x and y.
b. Hence find the two exact gradients of the relation at $x=3$.

Question 4

Evaluate the definite integral $\int_{0}^{\sqrt{e-1}}\left(\frac{2 x \log _{e}\left(x^{2}+1\right)}{x^{2}+1}\right) d x$.

Question 5

Consider $y=1+\left(x^{2}-2 x+2\right) \tan ^{-1}(x-1)$ for $x \in R$.
a. Show that $\frac{d y}{d x}=1+2(x-1) \tan ^{-1}(x-1)$ for $x \in R$.
b. Hence show that $(1,1)$ is a point of inflection of $y=1+\left(x^{2}-2 x+2\right) \tan ^{-1}(x-1)$.

Question 6

The position of a particle is given by $\boldsymbol{r}=\sin (2 t) \boldsymbol{i}+\cos (2 t) \boldsymbol{j}+\left(10-t^{2}\right) \boldsymbol{k}$.
a. Find the initial velocity of the particle. 2 marks
b. Show that the acceleration of the particle is constant in magnitude.

Question 7

The curve $y=\frac{2}{\sqrt{2-x^{2}}}, 0 \leq x \leq 1$ is rotated about the x-axis. Determine the exact volume of the solid of revolution.

Question 8

Solve the differential equation $\frac{d y}{d x}=\sin (2 x) \sqrt{1+\sin (x)}$ given that $y=\frac{7}{15}$ when $x=0$.

Question 9

Find p and q such that $\left\{z: \frac{(\operatorname{Re} z)^{2}}{p}+\frac{(\operatorname{Im} z)^{2}}{q}=1\right\}=\{z:|z+i|+|z-i|=4\}$.

Question 10

A $10-\mathrm{kg}$ block is placed on a rough surface inclined at 30° to the horizontal. The block is then pulled up the slope with a $10 g$-newton force at an upward angle of 30° to the inclined surface. The coefficient of sliding friction between the block and the inclined surface is 0.20 .
a. Show that the normal reaction of the inclined plane on the block is $5(\sqrt{3}-1) g$.
b. Hence find the acceleration of the $10-\mathrm{kg}$ block in terms of g.

